Protein scouts for dangerous bacteria

Friday, February 24, 2012

Millions of "good" bacteria exist harmoniously on the skin and in the intestines of healthy people. When harmful bacteria attack, the immune system fights back by sending out white blood cells to destroy the disease-causing interlopers. But how do white blood cells know which bacteria are good and which are harmful?

Northwestern University Feinberg School of Medicine researchers studied one type of white blood cell known as a macrophage, which is among the immune system's first to detect and eliminate harmful bacteria. The research team, led by Christian Stehlik, John P. Gallagher Research Professor of Rheumatology at Feinberg, discovered that the protein NLRP7 serves as a "scout" in macrophage cells, identifying bacterial cell wall components in harmful gram-positive bacteria such as *Staphylococcus aureus* and *Listeria monocytogenes*.

The findings will be published in the February 23 issue of the journal *Immunity*.

"NLRP7 is a novel intracellular pattern recognition receptor that specifically recognizes bacterial cell wall components, known as lipopeptides, in harmful bacteria," says Stehlik, who worked closely with collaborators Andrea Dorfleutner, research assistant professor of medicine at Feinberg, and Yon Rojanasakul.
Robert C. Byrd Distinguished Professor and Benedum Distinguished Professor at West Virginia University. "We show that activation of NLRP7 is necessary for eradicating bacterial infections through the formation of protein complexes called inflammasomes, which enable the production of defense factors in immune cells."

Identifying the molecule was complicated, says Sonal Khare, postdoctoral fellow at Feinberg and first author on the research paper, because the family of proteins within macrophages is quite large. "There were 22 likely candidates. To determine which one of these proteins is able to recognize bacteria in macrophages, we had to remove each one of them," she says. Through process of elimination, the team identified NLRP7 as the required protein.

Stehlik says the finding is significant because it contributes to a better understanding of how bacteria such as Listeria and Staphylococcus are recognized by the immune system. Listeria is found in uncooked meats, vegetables, and fruits such as cantaloupes. In 2011, listeria was the cause of the deadliest food contamination outbreak in the U.S. in more than a decade. S. aureus infections are most commonly contracted in hospitals, and 500,000 patients acquire Staphylococcus infections annually in the U.S. Methicillin-resistant S. aureus, or MRSA, strains are highly resistant to commonly-used antibiotics.

Understanding how the immune system recognizes these deadly intruders could one day lead to novel treatment strategies to combat these infections.

"The next phase of research related to NLRP7 and inflammasomes is progressing," says Stehlik. "We are continuing the research to explore mechanisms behind how this NLRP7 inflammasome is formed. We want to know whether we can manipulate this process to make the response stronger. We also will be exploring the use of mouse models in this pathway to study this response in vivo."

###

Northwestern University: http://www.northwestern.edu

Thanks to Northwestern University for this article.

This press release was posted to serve as a topic for discussion. Please comment below. We try our best to only post press releases that are associated with peer reviewed scientific literature. Critical discussions of the research are appreciated. If you need help finding a link to the original article, please contact us on twitter or via e-mail.

This press release has been viewed 47 time(s).
Protein scouts for dangerous bacteria

No comments recorded.

Watch a lifelogging camera capture the stark reality of a New Scientist editor's typical day
Neuroscience | Source: New Scientist | Views: 14 | Comments: 0

Huge Swarm of Gelatinous Sea Creatures Imaged in 3-D
Scientists have created a new 3-D picture of a giant swarm of tiny gelatinous sea creatures off Australia.
Marine Biology | Source: National Geographic News | Views: 14 | Comments: 0

Flesh Eating Bacteria Makes Super Molecular Glue
A bacteria that causes strep throat and flesh-eating diseases makes a glue that binds molecules.
Microbiology | Source: Discovery Channel News | Views: 17 | Comments: 0

World Bank issues SOS for oceans, backs alliance
The World Bank announced on Friday a global alliance to better manage and protect the world's oceans, which are under threat from over-fishing, pollution and climate change.
Marine Biology | Source: Reuters | Views: 17 | Comments: 0

New Bat Has Odd-Shaped Nose
Is that the head of an owl you see on the nose of this new bat species or an elaborate shield?
Animals | Source: Discovery Channel News | Views: 25 | Comments: 0

Study aims to bring Great Barrier Reef to living rooms
Finding Nemo is about to get a lot easier with the launch of a scientific survey that will allow anyone with access to the internet to take a virtual tour of Australia's Great Barrier Reef.
Marine Biology | Source: Reuters | Views: 19 | Comments: 0

Old Elephants Make Bad Role Models
More-mature bulls teach youngsters how to raid farms
Animal Behavior | Source: Science | Views: 18 | Comments: 0

Chinese fossil forest unearthed
Researchers discover a forest in northern China that was preserved in volcanic ash following an eruption 300,000 years ago.
Paleontology | Source: BBC News | Views: 23 | Comments: 0

Humboldt squid's impressive dives
Scientists tag Humboldt squid as they dive through very low-oxygen waters off the coast of California.
Marine Biology | Source: BBC News | Views: 25 | Comments: 0

Why Some Poison Frogs Taste Bittersweet When Licked
It's a discovery perhaps only a frog-licking scientist
Protein scouts for dangerous bacteria

could make: Toxic frogs secrete sugars and bile acids in addition to their poisons.